Quantcast
Channel: News – NetComposites
Viewing all articles
Browse latest Browse all 1761

Makerbot Launches Method X

$
0
0

Powered by Stratasys, METHOD X provides dimensional accuracy, precision, and reliability at a fraction of industrial 3D printing costs.

METHOD X amplifies accessible 3D printing with real ABS, a 100°C build chamber, and SR-30 supports designed for end-use parts and manufacturing tools.

MakerBot announced the launch of METHOD X, a manufacturing workstation engineered to challenge traditional manufacturing with real ABS (acrylonitrile butadiene styrene) material, a 100°C chamber, and Stratasys SR-30 soluble supports to deliver exceptional dimensional accuracy and precision for complex, durable parts.

METHOD X is capable of printing real ABS that can withstand up to 15°C higher temperatures, is up to 26% more rigid, and up to 12% stronger than modified ABS formulations used on desktop 3D printer competitors. Real ABS parts printed on METHOD X have no warping or cracking that typically occurs when printing modified ABS on desktop platforms without heated chambers.

Desktop 3D printer manufacturers attempt to get around part deformation that occurs, due to the high shrinkage rate of the material, by using a heated build plate in combination with altered ABS formulations that are easier to print but compromise thermal and mechanical properties. MakerBot Precision ABS has a heat deflection temperature of up to 15°C higher than competitors’ ABS, which are modified to make material printable without a heated chamber. With METHOD X, the 100°C circulating heated chamber significantly reduces part deformation while increasing part durability and surface finish.

MakerBot ABS for method has excellent thermal and mechanical properties similar to ABS materials used for injection moulding applications—making it ideal for a wide range of applications, including end-use parts, manufacturing tools, and functional prototypes. A 100°C circulating heated chamber provides a stable print environment for superior Z-layer bonding—resulting in high-strength parts with superior surface finish. With the MakerBot METHOD X, engineers can design, test, and produce models and custom end-use parts with durable, production- grade ABS for their manufacturing needs.

Also new is the availability of Stratasys SR-30 material for easy and fast support removal. METHOD X is the only 3D printer in its price class that uses SR-30, enabling unlimited design freedom and the ability to print unrestricted geometries, such as large overhangs, cavities, and shelled parts. The combination of SR-30 and MakerBot ABS is designed to provide outstanding surface finish and print precision.

“When we initially launched METHOD, we broke the price-to-performance barrier by delivering a 3D printer that was designed to bridge the technology gap between industrial and desktop 3D printers. This made industrial 3D printing accessible to professionals for the first time. Since then, we have shipped hundreds of printers and received positive feedback from our customers on the precision and reliability of the machine,” said Nadav Goshen, CEO, MakerBot. “With METHOD X, we are taking  a step further to revolutionise manufacturing. METHOD X was created for engineers who need true ABS for production-ready parts that are dimensionally-accurate with no geometric restrictions. METHOD X delivers industrial-level 3D printing without compromising on ABS material properties and automation in a new price category.”

Engineered as an automated, tinker-free industrial 3D printing system, METHOD X includes industrial features such as Dry-Sealed Material Bays, Dual Performance Extruders, Soluble Supports, and an Ultra-Rigid Metal Frame. METHOD X’s automation and industrial technologies create a controlled printing environment so professionals can design, test, and iterate faster. The lengthened thermal core in the performance extruders are up to 50% longer than a standard hot end to enable faster extrusion, resulting in up to 2X faster print speeds than desktop 3D printers.

These key technologies, combined with MakerBot ABS for METHOD, are designed to help engineers achieve dimensionally-accurate, production-grade parts at a significantly lower cost than traditional manufacturing processes. Engineers can print repeatable and consistent parts, such as jigs, fixtures, and end-effectors, with a measurable dimensional accuracy of ± 0.2mm (± 0.007in).

MakerBot METHOD X’s automated and advanced features provide users with a seamless workflow to help them optimise their design and production processes. 

The METHOD platform has been tested by MakerBot for over 300,000 hours of system reliability, subsystem, and print quality testing.

Shipping of METHOD X is expected to begin at the end of August 2019.


Viewing all articles
Browse latest Browse all 1761

Trending Articles